free web tracker

Mining Heterogeneous Information Networks

Author : Yizhou Sun
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2012-08-15

PDF Download Mining Heterogeneous Information Networks Books For free written by Yizhou Sun and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-15 with Computers categories.

Real-world physical and abstract data objects are interconnected, forming gigantic, interconnected networks. By structuring these data objects and interactions between these objects into multiple types, such networks become semi-structured heterogeneous information networks. Most real-world applications that handle big data, including interconnected social media and social networks, scientific, engineering, or medical information systems, online e-commerce systems, and most database systems, can be structured into heterogeneous information networks. Therefore, effective analysis of large-scale heterogeneous information networks poses an interesting but critical challenge. In this book, we investigate the principles and methodologies of mining heterogeneous information networks. Departing from many existing network models that view interconnected data as homogeneous graphs or networks, our semi-structured heterogeneous information network model leverages the rich semantics of typed nodes and links in a network and uncovers surprisingly rich knowledge from the network. This semi-structured heterogeneous network modeling leads to a series of new principles and powerful methodologies for mining interconnected data, including: (1) rank-based clustering and classification; (2) meta-path-based similarity search and mining; (3) relation strength-aware mining, and many other potential developments. This book introduces this new research frontier and points out some promising research directions. Table of Contents: Introduction / Ranking-Based Clustering / Classification of Heterogeneous Information Networks / Meta-Path-Based Similarity Search / Meta-Path-Based Relationship Prediction / Relation Strength-Aware Clustering with Incomplete Attributes / User-Guided Clustering via Meta-Path Selection / Research Frontiers

Social Sensing

Author : Dong Wang
language : en
Publisher: Morgan Kaufmann
Release Date : 2015-04-17

PDF Download Social Sensing Books For free written by Dong Wang and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-17 with Computers categories.

Increasingly, human beings are sensors engaging directly with the mobile Internet. Individuals can now share real-time experiences at an unprecedented scale. Social Sensing: Building Reliable Systems on Unreliable Data looks at recent advances in the emerging field of social sensing, emphasizing the key problem faced by application designers: how to extract reliable information from data collected from largely unknown and possibly unreliable sources. The book explains how a myriad of societal applications can be derived from this massive amount of data collected and shared by average individuals. The title offers theoretical foundations to support emerging data-driven cyber-physical applications and touches on key issues such as privacy. The authors present solutions based on recent research and novel ideas that leverage techniques from cyber-physical systems, sensor networks, machine learning, data mining, and information fusion. Offers a unique interdisciplinary perspective bridging social networks, big data, cyber-physical systems, and reliability Presents novel theoretical foundations for assured social sensing and modeling humans as sensors Includes case studies and application examples based on real data sets Supplemental material includes sample datasets and fact-finding software that implements the main algorithms described in the book

Graph Based Social Media Analysis

Author : Ioannis Pitas
language : en
Publisher: CRC Press
Release Date : 2016-04-19

PDF Download Graph Based Social Media Analysis Books For free written by Ioannis Pitas and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Computers categories.

Focused on the mathematical foundations of social media analysis, Graph-Based Social Media Analysis provides a comprehensive introduction to the use of graph analysis in the study of social and digital media. It addresses an important scientific and technological challenge, namely the confluence of graph analysis and network theory with linear algebra, digital media, machine learning, big data analysis, and signal processing. Supplying an overview of graph-based social media analysis, the book provides readers with a clear understanding of social media structure. It uses graph theory, particularly the algebraic description and analysis of graphs, in social media studies. The book emphasizes the big data aspects of social and digital media. It presents various approaches to storing vast amounts of data online and retrieving that data in real-time. It demystifies complex social media phenomena, such as information diffusion, marketing and recommendation systems in social media, and evolving systems. It also covers emerging trends, such as big data analysis and social media evolution. Describing how to conduct proper analysis of the social and digital media markets, the book provides insights into processing, storing, and visualizing big social media data and social graphs. It includes coverage of graphs in social and digital media, graph and hyper-graph fundamentals, mathematical foundations coming from linear algebra, algebraic graph analysis, graph clustering, community detection, graph matching, web search based on ranking, label propagation and diffusion in social media, graph-based pattern recognition and machine learning, graph-based pattern classification and dimensionality reduction, and much more. This book is an ideal reference for scientists and engineers working in social media and digital media production and distribution. It is also suitable for use as a textbook in undergraduate or graduate courses on digital media, social media, or social networks.

Graph Mining

Author : Deepayan Chakrabarti
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2012-10-01

PDF Download Graph Mining Books For free written by Deepayan Chakrabarti and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-01 with Computers categories.

What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions

Provenance Data In Social Media

Author : Geoffrey Barbier
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2013-05-01

PDF Download Provenance Data In Social Media Books For free written by Geoffrey Barbier and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-01 with Computers categories.

Social media shatters the barrier to communicate anytime anywhere for people of all walks of life. The publicly available, virtually free information in social media poses a new challenge to consumers who have to discern whether a piece of information published in social media is reliable. For example, it can be difficult to understand the motivations behind a statement passed from one user to another, without knowing the person who originated the message. Additionally, false information can be propagated through social media, resulting in embarrassment or irreversible damages. Provenance data associated with a social media statement can help dispel rumors, clarify opinions, and confirm facts. However, provenance data about social media statements is not readily available to users today. Currently, providing this data to users requires changing the social media infrastructure or offering subscription services. Taking advantage of social media features, research in this nascent field spearheads the search for a way to provide provenance data to social media users, thus leveraging social media itself by mining it for the provenance data. Searching for provenance data reveals an interesting problem space requiring the development and application of new metrics in order to provide meaningful provenance data to social media users. This lecture reviews the current research on information provenance, explores exciting research opportunities to address pressing needs, and shows how data mining can enable a social media user to make informed judgements about statements published in social media. Table of Contents: Information Provenance in Social Media / Provenance Attributes / Provenance via Network Information / Provenance Data

Stanford Bulletin

Author :
language : en
Release Date : 1995

PDF Download Stanford Bulletin Books For free written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Education categories.

Semantic Breakthrough In Drug Discovery

Author : Bin Chen
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2014-10-01

PDF Download Semantic Breakthrough In Drug Discovery Books For free written by Bin Chen and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10-01 with Computers categories.

The current drug development paradigm---sometimes expressed as, ``One disease, one target, one drug''---is under question, as relatively few drugs have reached the market in the last two decades. Meanwhile, the research focus of drug discovery is being placed on the study of drug action on biological systems as a whole, rather than on individual components of such systems. The vast amount of biological information about genes and proteins and their modulation by small molecules is pushing drug discovery to its next critical steps, involving the integration of chemical knowledge with these biological databases. Systematic integration of these heterogeneous datasets and the provision of algorithms to mine the integrated datasets would enable investigation of the complex mechanisms of drug action; however, traditional approaches face challenges in the representation and integration of multi-scale datasets, and in the discovery of underlying knowledge in the integrated datasets. The Semantic Web, envisioned to enable machines to understand and respond to complex human requests and to retrieve relevant, yet distributed, data, has the potential to trigger system-level chemical-biological innovations. Chem2Bio2RDF is presented as an example of utilizing Semantic Web technologies to enable intelligent analyses for drug discovery. Table of Contents: Introduction / Data Representation and Integration Using RDF / Data Representation and Integration Using OWL / Finding Complex Biological Relationships in PubMed Articles using Bio-LDA / Integrated Semantic Approach for Systems Chemical Biology Knowledge Discovery / Semantic Link Association Prediction / Conclusions / References / Authors' Biographies