free web tracker

Mining Heterogeneous Information Networks


Author : Yizhou Sun
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2012


PDF Download Mining Heterogeneous Information Networks Books For free written by Yizhou Sun and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.


Real-world physical and abstract data objects are interconnected, forming gigantic, interconnected networks. By structuring these data objects and interactions between these objects into multiple types, such networks become semi-structured heterogeneous information networks. Most real-world applications that handle big data, including interconnected social media and social networks, scientific, engineering, or medical information systems, online e-commerce systems, and most database systems, can be structured into heterogeneous information networks. Therefore, effective analysis of large-scale heterogeneous information networks poses an interesting but critical challenge. In this book, we investigate the principles and methodologies of mining heterogeneous information networks. Departing from many existing network models that view interconnected data as homogeneous graphs or networks, our semi-structured heterogeneous information network model leverages the rich semantics of typed nodes and links in a network and uncovers surprisingly rich knowledge from the network. This semi-structured heterogeneous network modeling leads to a series of new principles and powerful methodologies for mining interconnected data, including: (1) rank-based clustering and classification; (2) meta-path-based similarity search and mining; (3) relation strength-aware mining, and many other potential developments. This book introduces this new research frontier and points out some promising research directions. Table of Contents: Introduction / Ranking-Based Clustering / Classification of Heterogeneous Information Networks / Meta-Path-Based Similarity Search / Meta-Path-Based Relationship Prediction / Relation Strength-Aware Clustering with Incomplete Attributes / User-Guided Clustering via Meta-Path Selection / Research Frontiers

Graph Mining


Author : Deepayan Chakrabarti
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2012-10-01


PDF Download Graph Mining Books For free written by Deepayan Chakrabarti and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-01 with Computers categories.


What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions

Encyclopedia Of Data Warehousing And Mining


Author : Wang, John
language : en
Publisher: IGI Global
Release Date : 2005-06-30


PDF Download Encyclopedia Of Data Warehousing And Mining Books For free written by Wang, John and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-06-30 with Medical categories.


Data Warehousing and Mining (DWM) is the science of managing and analyzing large datasets and discovering novel patterns and in recent years has emerged as a particularly exciting and industrially relevant area of research. Prodigious amounts of data are now being generated in domains as diverse as market research, functional genomics and pharmaceuticals; intelligently analyzing these data, with the aim of answering crucial questions and helping make informed decisions, is the challenge that lies ahead. The Encyclopedia of Data Warehousing and Mining provides a comprehensive, critical and descriptive examination of concepts, issues, trends, and challenges in this rapidly expanding field of data warehousing and mining (DWM). This encyclopedia consists of more than 350 contributors from 32 countries, 1,800 terms and definitions, and more than 4,400 references. This authoritative publication offers in-depth coverage of evolutions, theories, methodologies, functionalities, and applications of DWM in such interdisciplinary industries as healthcare informatics, artificial intelligence, financial modeling, and applied statistics, making it a single source of knowledge and latest discoveries in the field of DWM.

Data Mining Concepts And Techniques


Author : Jiawei Han
language : en
Publisher: Elsevier
Release Date : 2011-06-09


PDF Download Data Mining Concepts And Techniques Books For free written by Jiawei Han and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-09 with Computers categories.


Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Link Mining Models Algorithms And Applications


Author : Philip S. Yu
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-16


PDF Download Link Mining Models Algorithms And Applications Books For free written by Philip S. Yu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-16 with Science categories.


This book offers detailed surveys and systematic discussion of models, algorithms and applications for link mining, focusing on theory and technique, and related applications: text mining, social network analysis, collaborative filtering and bioinformatics.

Heterogeneous Information Network Analysis And Applications


Author : Chuan Shi
language : en
Publisher: Springer
Release Date : 2017-05-25


PDF Download Heterogeneous Information Network Analysis And Applications Books For free written by Chuan Shi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-25 with Computers categories.


This book offers researchers an understanding of the fundamental issues and a good starting point to work on this rapidly expanding field. It provides a comprehensive survey of current developments of heterogeneous information network. It also presents the newest research in applications of heterogeneous information networks to similarity search, ranking, clustering, recommendation. This information will help researchers to understand how to analyze networked data with heterogeneous information networks. Common data mining tasks are explored, including similarity search, ranking, and recommendation. The book illustrates some prototypes which analyze networked data. Professionals and academics working in data analytics, networks, machine learning, and data mining will find this content valuable. It is also suitable for advanced-level students in computer science who are interested in networking or pattern recognition.

Ensemble Methods In Data Mining


Author : Giovanni Seni
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2010


PDF Download Ensemble Methods In Data Mining Books For free written by Giovanni Seni and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Computers categories.


"Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges -- from investment timing to drug discovery, and fraud detection to recommendation systems -- where predictive accuracy is more vital than model interpretability. Ensembles are useful with all modeling algorithms, but this book focuses on decision trees to explain them most clearly. After describing trees and their strengths and weaknesses, the authors provide an overview of regularization -- today understood to be a key reason for the superior performance of modern ensembling algorithms. The book continues with a clear description of two recent developments: Importance Sampling (IS) and Rule Ensembles (RE). IS reveals classic ensemble methods -- bagging, random forests, and boosting -- to be special cases of a single algorithm, thereby showing how to improve their accuracy and speed. REs are linear rule models derived from decision tree ensembles. They are the most interpretable version of ensembles, which is essential to applications such as credit scoring and fault diagnosis. Lastly, the authors explain the paradox of how ensembles achieve greater accuracy on new data despite their (apparently much greater) complexity."--Publisher's website.