free web tracker

Deep Learning Mit R


Author : François Chollet
language : en
Publisher:
Release Date : 2018-09-30


PDF Download Deep Learning Mit R Books For free written by François Chollet and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-30 with categories.




R In A Nutshell


Author : Joseph Adler
language : de
Publisher: O'Reilly Germany
Release Date : 2010-12-31


PDF Download R In A Nutshell Books For free written by Joseph Adler and has been published by O'Reilly Germany this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-12-31 with Computers categories.


Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Machine Learning With R


Author : Brett Lantz
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-07-31


PDF Download Machine Learning With R Books For free written by Brett Lantz and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-31 with Computers categories.


Updated and upgraded to the latest libraries and most modern thinking, Machine Learning with R, Second Edition provides you with a rigorous introduction to this essential skill of professional data science. Without shying away from technical theory, it is written to provide focused and practical knowledge to get you building algorithms and crunching your data, with minimal previous experience. With this book, you'll discover all the analytical tools you need to gain insights from complex data and learn how to choose the correct algorithm for your specific needs. Through full engagement with the sort of real-world problems data-wranglers face, you'll learn to apply machine learning methods to deal with common tasks, including classification, prediction, forecasting, market analysis, and clustering.

Introduction To Machine Learning With R


Author : Scott V. Burger
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-03-07


PDF Download Introduction To Machine Learning With R Books For free written by Scott V. Burger and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-07 with Computers categories.


Machine learning is an intimidating subject until you know the fundamentals. If you understand basic coding concepts, this introductory guide will help you gain a solid foundation in machine learning principles. Using the R programming language, you’ll first start to learn with regression modelling and then move into more advanced topics such as neural networks and tree-based methods. Finally, you’ll delve into the frontier of machine learning, using the caret package in R. Once you develop a familiarity with topics such as the difference between regression and classification models, you’ll be able to solve an array of machine learning problems. Author Scott V. Burger provides several examples to help you build a working knowledge of machine learning. Explore machine learning models, algorithms, and data training Understand machine learning algorithms for supervised and unsupervised cases Examine statistical concepts for designing data for use in models Dive into linear regression models used in business and science Use single-layer and multilayer neural networks for calculating outcomes Look at how tree-based models work, including popular decision trees Get a comprehensive view of the machine learning ecosystem in R Explore the powerhouse of tools available in R’s caret package

Machine Learning With R


Author : Abhijit Ghatak
language : en
Publisher: Springer
Release Date : 2017-11-23


PDF Download Machine Learning With R Books For free written by Abhijit Ghatak and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-23 with Computers categories.


This book helps readers understand the mathematics of machine learning, and apply them in different situations. It is divided into two basic parts, the first of which introduces readers to the theory of linear algebra, probability, and data distributions and it’s applications to machine learning. It also includes a detailed introduction to the concepts and constraints of machine learning and what is involved in designing a learning algorithm. This part helps readers understand the mathematical and statistical aspects of machine learning. In turn, the second part discusses the algorithms used in supervised and unsupervised learning. It works out each learning algorithm mathematically and encodes it in R to produce customized learning applications. In the process, it touches upon the specifics of each algorithm and the science behind its formulation. The book includes a wealth of worked-out examples along with R codes. It explains the code for each algorithm, and readers can modify the code to suit their own needs. The book will be of interest to all researchers who intend to use R for machine learning, and those who are interested in the practical aspects of implementing learning algorithms for data analysis. Further, it will be particularly useful and informative for anyone who has struggled to relate the concepts of mathematics and statistics to machine learning.

Machine Learning With R Cookbook


Author : AshishSingh Bhatia
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-10-23


PDF Download Machine Learning With R Cookbook Books For free written by AshishSingh Bhatia and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-23 with Computers categories.


Explore over 110 recipes to analyze data and build predictive models with simple and easy-to-use R code About This Book Apply R to simplify predictive modeling with short and simple code Use machine learning to solve problems ranging from small to big data Build a training and testing dataset, applying different classification methods. Who This Book Is For This book is for data science professionals, data analysts, or people who have used R for data analysis and machine learning who now wish to become the go-to person for machine learning with R. Those who wish to improve the efficiency of their machine learning models and need to work with different kinds of data set will find this book very insightful. What You Will Learn Create and inspect transaction datasets and perform association analysis with the Apriori algorithm Visualize patterns and associations using a range of graphs and find frequent item-sets using the Eclat algorithm Compare differences between each regression method to discover how they solve problems Detect and impute missing values in air quality data Predict possible churn users with the classification approach Plot the autocorrelation function with time series analysis Use the Cox proportional hazards model for survival analysis Implement the clustering method to segment customer data Compress images with the dimension reduction method Incorporate R and Hadoop to solve machine learning problems on big data In Detail Big data has become a popular buzzword across many industries. An increasing number of people have been exposed to the term and are looking at how to leverage big data in their own businesses, to improve sales and profitability. However, collecting, aggregating, and visualizing data is just one part of the equation. Being able to extract useful information from data is another task, and a much more challenging one. Machine Learning with R Cookbook, Second Edition uses a practical approach to teach you how to perform machine learning with R. Each chapter is divided into several simple recipes. Through the step-by-step instructions provided in each recipe, you will be able to construct a predictive model by using a variety of machine learning packages. In this book, you will first learn to set up the R environment and use simple R commands to explore data. The next topic covers how to perform statistical analysis with machine learning analysis and assess created models, covered in detail later on in the book. You'll also learn how to integrate R and Hadoop to create a big data analysis platform. The detailed illustrations provide all the information required to start applying machine learning to individual projects. With Machine Learning with R Cookbook, machine learning has never been easier. Style and approach This is an easy-to-follow guide packed with hands-on examples of machine learning tasks. Each topic includes step-by-step instructions on tackling difficulties faced when applying R to machine learning.

Mastering Machine Learning With R


Author : Cory Lesmeister
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-10-28


PDF Download Mastering Machine Learning With R Books For free written by Cory Lesmeister and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-28 with Computers categories.


Master machine learning techniques with R to deliver insights for complex projects About This Book Get to grips with the application of Machine Learning methods using an extensive set of R packages Understand the benefits and potential pitfalls of using machine learning methods Implement the numerous powerful features offered by R with this comprehensive guide to building an independent R-based ML system Who This Book Is For If you want to learn how to use R's machine learning capabilities to solve complex business problems, then this book is for you. Some experience with R and a working knowledge of basic statistical or machine learning will prove helpful. What You Will Learn Gain deep insights to learn the applications of machine learning tools to the industry Manipulate data in R efficiently to prepare it for analysis Master the skill of recognizing techniques for effective visualization of data Understand why and how to create test and training data sets for analysis Familiarize yourself with fundamental learning methods such as linear and logistic regression Comprehend advanced learning methods such as support vector machines Realize why and how to apply unsupervised learning methods In Detail Machine learning is a field of Artificial Intelligence to build systems that learn from data. Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning to your data. The book starts with introduction to Cross-Industry Standard Process for Data Mining. It takes you through Multivariate Regression in detail. Moving on, you will also address Classification and Regression trees. You will learn a couple of “Unsupervised techniques”. Finally, the book will walk you through text analysis and time series. The book will deliver practical and real-world solutions to problems and variety of tasks such as complex recommendation systems. By the end of this book, you will gain expertise in performing R machine learning and will be able to build complex ML projects using R and its packages. Style and approach This is a book explains complicated concepts with easy to follow theory and real-world, practical applications. It demonstrates the power of R and machine learning extensively while highlighting the constraints.