free web tracker

An Introduction To Latent Variable Growth Curve Modeling


Author : Terry E. Duncan
language : en
Publisher: Routledge
Release Date : 2013-05-13


PDF Download An Introduction To Latent Variable Growth Curve Modeling Books For free written by Terry E. Duncan and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-13 with Business & Economics categories.


This book provides a comprehensive introduction to latent variable growth curve modeling (LGM) for analyzing repeated measures. It presents the statistical basis for LGM and its various methodological extensions, including a number of practical examples of its use. It is designed to take advantage of the reader’s familiarity with analysis of variance and structural equation modeling (SEM) in introducing LGM techniques. Sample data, syntax, input and output, are provided for EQS, Amos, LISREL, and Mplus on the book’s CD. Throughout the book, the authors present a variety of LGM techniques that are useful for many different research designs, and numerous figures provide helpful diagrams of the examples. Updated throughout, the second edition features three new chapters—growth modeling with ordered categorical variables, growth mixture modeling, and pooled interrupted time series LGM approaches. Following a new organization, the book now covers the development of the LGM, followed by chapters on multiple-group issues (analyzing growth in multiple populations, accelerated designs, and multi-level longitudinal approaches), and then special topics such as missing data models, LGM power and Monte Carlo estimation, and latent growth interaction models. The model specifications previously included in the appendices are now available on the CD so the reader can more easily adapt the models to their own research. This practical guide is ideal for a wide range of social and behavioral researchers interested in the measurement of change over time, including social, developmental, organizational, educational, consumer, personality and clinical psychologists, sociologists, and quantitative methodologists, as well as for a text on latent variable growth curve modeling or as a supplement for a course on multivariate statistics. A prerequisite of graduate level statistics is recommended.

Applied Quantitative Analysis In Education And The Social Sciences


Author : Yaacov Petscher
language : en
Publisher: Routledge
Release Date : 2013-03-05


PDF Download Applied Quantitative Analysis In Education And The Social Sciences Books For free written by Yaacov Petscher and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-05 with Education categories.


To say that complex data analyses are ubiquitous in the education and social sciences might be an understatement. Funding agencies and peer-review journals alike require that researchers use the most appropriate models and methods for explaining phenomena. Univariate and multivariate data structures often require the application of more rigorous methods than basic correlational or analysis of variance models. Additionally, though a vast set of resources may exist on how to run analysis, difficulties may be encountered when explicit direction is not provided as to how one should run a model and interpret results. The mission of this book is to expose the reader to advanced quantitative methods as it pertains to individual level analysis, multilevel analysis, item-level analysis, and covariance structure analysis. Each chapter is self-contained and follows a common format so that readers can run the analysis and correctly interpret the output for reporting.

An Introduction To Multilevel Modeling Techniques


Author : Ronald H. Heck
language : en
Publisher: Routledge
Release Date : 2015-03-05


PDF Download An Introduction To Multilevel Modeling Techniques Books For free written by Ronald H. Heck and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-05 with Psychology categories.


Univariate and multivariate multilevel models are used to understand how to design studies and analyze data in this comprehensive text distinguished by its variety of applications from the educational, behavioral, and social sciences. Basic and advanced models are developed from the multilevel regression (MLM) and latent variable (SEM) traditions within one unified analytic framework for investigating hierarchical data. The authors provide examples using each modeling approach and also explore situations where alternative approaches may be more appropriate, given the research goals. Numerous examples and exercises allow readers to test their understanding of the techniques presented. Changes to the new edition include: -The use of Mplus 7.2 for running the analyses including the input and data files at www.routledge.com/9781848725522. -Expanded discussion of MLM and SEM model-building that outlines the steps taken in the process, the relevant Mplus syntax, and tips on how to evaluate the models. -Expanded pedagogical program now with chapter objectives, boldfaced key terms, a glossary, and more tables and graphs to help students better understand key concepts and techniques. -Numerous, varied examples developed throughout which make this book appropriate for use in education, psychology, business, sociology, and the health sciences. -Expanded coverage of missing data problems in MLM using ML estimation and multiple imputation to provide currently-accepted solutions (Ch. 10). -New chapter on three-level univariate and multilevel multivariate MLM models provides greater options for investigating more complex theoretical relationships(Ch.4). -New chapter on MLM and SEM models with categorical outcomes facilitates the specification of multilevel models with observed and latent outcomes (Ch.8). -New chapter on multilevel and longitudinal mixture models provides readers with options for identifying emergent groups in hierarchical data (Ch.9). -New chapter on the utilization of sample weights, power analysis, and missing data provides guidance on technical issues of increasing concern for research publication (Ch.10). Ideal as a text for graduate courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, or advanced quantitative techniques taught in psychology, business, education, health, and sociology, this book’s practical approach also appeals to researchers. Recommended prerequisites are introductory univariate and multivariate statistics.

The Reviewer S Guide To Quantitative Methods In The Social Sciences


Author : Gregory R. Hancock
language : en
Publisher: Routledge
Release Date : 2018-11-15


PDF Download The Reviewer S Guide To Quantitative Methods In The Social Sciences Books For free written by Gregory R. Hancock and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-15 with Education categories.


The Reviewer’s Guide to Quantitative Methods in the Social Sciences provides evaluators of research manuscripts and proposals in the social and behavioral sciences with the resources they need to read, understand, and assess quantitative work. 35 uniquely structured chapters cover both traditional and emerging methods of quantitative data analysis, which neither junior nor veteran reviewers can be expected to know in detail. The second edition of this valuable resource updates readers on each technique’s key principles, appropriate usage, underlying assumptions and limitations, providing reviewers with the information they need to offer constructive commentary on works they evaluate. Written by methodological and applied scholars, this volume is also an indispensable author’s reference for preparing sound research manuscripts and proposals.

The Association Graph And The Multigraph For Loglinear Models


Author : Harry J. Khamis
language : en
Publisher: SAGE
Release Date : 2011-01-12


PDF Download The Association Graph And The Multigraph For Loglinear Models Books For free written by Harry J. Khamis and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-12 with Mathematics categories.


The Association Graph and the Multigraph for Loglinear Models will help students, particularly those studying the analysis of categorical data, to develop the ability to evaluate and unravel even the most complex loglinear models without heavy calculations or statistical software. This supplemental text reviews loglinear models, explains the association graph, and introduces the multigraph to students who may have little prior experience of graphical techniques, but have some familiarity with categorical variable modeling. The author presents logical step-by-step techniques from the point of view of the practitioner, focusing on how the technique is applied to contingency table data and how the results are interpreted.

The Sage Sourcebook Of Advanced Data Analysis Methods For Communication Research


Author : Andrew F. Hayes
language : en
Publisher: Sage Publications, Inc
Release Date : 2008


PDF Download The Sage Sourcebook Of Advanced Data Analysis Methods For Communication Research Books For free written by Andrew F. Hayes and has been published by Sage Publications, Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Language Arts & Disciplines categories.


This sourcebook provides an introductory treatment of various advanced statistical methods applied to research in the field of communication.

Longitudinal Structural Equation Modeling


Author : Jason T. Newsom
language : en
Publisher: Routledge
Release Date : 2015-06-19


PDF Download Longitudinal Structural Equation Modeling Books For free written by Jason T. Newsom and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-19 with Psychology categories.


This comprehensive resource reviews structural equation modeling (SEM) strategies for longitudinal data to help readers see which modeling options are available for which hypotheses. The author demonstrates how SEM is related to other longitudinal data techniques throughout. By exploring connections between models, readers gain a better understanding of when to choose one analysis over another. The book explores basic models to sophisticated ones including the statistical and conceptual underpinnings that are the building blocks of the analyses. Accessibly written, research examples from the behavioral and social sciences and results interpretations are provided throughout. The emphasis is on concepts and practical guidance for applied research rather than on mathematical proofs. New terms are highlighted and defined in the glossary. Figures are included for every model along with detailed discussions of model specification and implementation issues. Each chapter also includes examples of each model type, comment sections that provide practical guidance, model extensions, and recommended readings. Highlights include: Covers the major SEM approaches to longitudinal analysis in one resource. Explores connections between longitudinal SEM models to enhance integration. Numerous examples that help readers match research questions to appropriate analyses and interpret results. Reviews practical issues related to model specification and estimation to reinforce connections. Analyzes continuous and discrete (binary and ordinal) variables throughout for breadth not found in other sources. Reviews key SEM concepts for those who need a refresher (Ch. 1). Emphasizes how to apply and interpret each model through realistic data examples. Provides the book’s data sets at www.longitudinalsem.com along with the Mplus and R-lavaan syntax used to generate the results. Introduces the LISREL notation system used throughout (Appendix A). The chapters can be read out of order but it is best to read chapters 1 – 4 first because most of the later chapters refer back to them. The book opens with a review of latent variables and analysis of binary and ordinal variables. Chapter 2 applies this information to assessing longitudinal measurement invariance. SEM tests of dependent means and proportions over time points are explored in Chapter 3, and stability and change, difference scores, and lagged regression are covered in Chapter 4. The remaining chapters are each devoted to one major type of longitudinal SEM -- repeated measures analysis models, full cross-lagged panel models and simplex models, modeling stability with state-trait models, linear and nonlinear growth curve models, latent difference score models, latent transition analysis, time series analysis, survival analysis, and attrition. Missing data is discussed in the context of many of the preceding models in Chapter 13. Ideal for graduate courses on longitudinal (data) analysis, advanced SEM, longitudinal SEM, and/or advanced data (quantitative) analysis taught in the behavioral, social, and health sciences, this text also appeals to researchers in these fields. Intended for those without an extensive math background, prerequisites include familiarity with basic SEM. Matrix algebra is avoided in all but a few places.